文/数据侠CarloRatti、FábioDuarte
共享单车都这么火了,但它还只是智慧城市的冰山一角而已。一群来自MIT感知城市实验室的科学家们,已经开始研究“共享汽车”出行的算法模型。他们分析了纽约1.7亿条出租车轨迹数据发现,如果能够用实时数据来调动纽约的出租车系统,可以减少40%的运输线路。换句话说,寸步难行的“大苹果”终于可以迎来畅通无阻的日子了。纽约交通比北京还糟?
MIT大牛们给出了解决方案
一个周末,北京的DT君兴高采烈地下了班,要赶飞机回上海与粉丝见面。结果光是从朝阳到机场的路上,坐出租车就堵了3个小时。
望着出租车外霾色四溢的天空,那一刻,DT君的内心是崩溃的。我终于明白,为什么在《五环之歌》里,岳云鹏要为北京的交通“放花篮”了。
其实,交通拥堵和空气污染不是发展中国家城市的专利,而是全球大城市的通病。就拿美国来说,在其本土83个大型城市区域中,每年由于交通拥堵所浪费的时间和燃料费用相当于亿美元。根据世卫组织的研究,每年全球有超过一百万例死亡与室外空气污染相关,而交通污染更是占了极大的比重。
作为世界上最大的城市之一,纽约的情况跟北京相比,没有最糟,只有更糟。我们经常在电影里看到纽约拥挤的街道上那些寸步难行的*色出租车。拥挤,也是纽约的日常。糟糕的交通状况,不仅影响了城市的生活质量,还会直接污染城市空气,危害人们的健康。
(图片说明:堵车,也是纽约城市交通的常态;图片来源:视觉中国)
怎么办呢?
城市拥堵的主角是车辆,那解决方法就要从车辆入手。来自麻省理工学院感知城市实验室(MITSenseableCityLaboratory)的一帮极客们想了一个办法——拼车。
拼车?这个任性的方案,听起来跟MIT的鼎鼎大名有一些莫名的违和感。道理DT君都懂,是骡子是马还是需要拉出来遛遛。
拼车的建议不是忽悠,背后有大数据计算的科学基础
如果你有过在机场排队等出租车的经历,你大概就会明白“拼车”的含义。那些拉你拼车的出租车司机们,都是想通过最大效率的运用车辆的运输资源,获取更多的资金收益。
某种程度上来说,MIT感知城市实验室的“拼车”方案,与拉客的那些出租车司机并没有本质的不同:都是倡导大家一起共享乘车资源,让每辆汽车的运输效率最大化。
20世纪70年代,受到石油危机的影响,美国开始系统性地研究“拼车”问题。危机期间,汽车的使用数量急剧减少。城市旺盛的运输需求,导致越来越多的人不得不接受与他人“拼出租车”的出行方案。那段时间,大量的拼车行为极大地缓解了纽约的城市交通压力。石油危机后,一些学者开始正式提出用拼车的方案解决交通难题。
说起来容易,但传统的拼车方案有一个很大的困难:即如何调度出租车资源,在最短线路上让最多的乘客上车下车。说白了,这其实是一个数学问题。理论上讲,拼车问题可以被看做一个“动态搭车”的情况——在一个清晰的时间间隔(TimeWindow)内,一定数量的乘客(货物)如何高效地在特定地点被收集、投放。
传统的研究会使用线性规划(LinearProgramming)的方法。不过这种方法会很大程度上受到变量数量的影响,只能用于小规模的路线优化情景,比如在机场。
但是纽约每天有成千上万辆出租车在运营,产生海量的行驶记录,这是传统的线性规划无法胜任的城市场景。于是MIT的极客们用大数据的方法,将拼车这个时空共享问题,转换成了图论(GraphTheory)框架,发明了“共享网络”(ShareabilityNetwork)模型。
(图片说明:基于图论的方法计算拼车路线的过程,详情可以参阅参考资料3:Quantifyingthebenefitsofvehiclepoolingwithshareabilitynetwork)
这个模型不仅解决了共享拼车的效率问题,还能够无压力地对海量数据进行计算。他们搜集了纽约年共辆注册出租车的一亿五千万条行驶数据,分析他们的行驶线路,接送乘客的情况等等,最终形成了一个动态的拼车调度方案。不仅如此,他们甚至把结果做成了一个大型的可视化交互页面(HubCab),让用户自己去体会在纽约搭乘出租车的情况。
纽约出租车轨迹图:一张包含1.7亿条数据的超级地图
在HubCab这个交互式的可视化项目中,MIT感知城市实验室以纽约出租车的行驶轨迹为切入口,研究了人们的出行习惯,旨在探索纽约城市化交通的未来。
(图片说明:纽约城市1年内一亿七千万的出租车行驶轨迹地图;图片来源:HubCab)
在HubCab上,你可以通过左上角的加减按钮,调节观察纽约的城市视角。另一侧的右上角,还可以精确地选择出租车的运营时段。接下来,你可以在地图上任何一个地方,拖动*色的“我要上车”标志,以及蓝色的“我要下车”标志,来确定你的出行线路。
(图片说明:截图展示了在曼哈顿的两个上下车点上,有多少出租车流,以及共享方案下可以获得的社会受益;图片来源:Hubcab)
通过后台计算,HubCab会立刻告诉你,在这个区域内有多少跟你相似的旅行路线。另外,留意地图左上方的小绿框。它代表,如果你选择“拼车”,能够带来多少社会收益。列出的三行数据分别代表:节省的乘客票价,公里路程以及二氧化碳排放。
MIT的研究表明,在拼车这一共享方案下,可以减少纽约40%的出租车运营线路,为乘客节约2.5~3美元/英里的出租车费用,以及g/英里的二氧化碳排放。
不仅如此,这些可视化还为我们描述了一个城市的集体性流动特点。
(图片说明:凌晨3点到6点间JFK机场的出租车接送客情况;图片来源:Hubcab)
上面这张图描绘了在凌晨3点至6点间,所有从纽约JFK机场上车和下车的出租车乘客的情况。可以看到,环绕机场密密麻麻的都是*色乘车点。也就是说在3点到6点,依然有大量的乘客从机场奔向纽约这个不夜城中去。
HubCab将纽约地图以40米为单位切分成了20万个街道块,描绘出了纽约超过辆*色出租车,在这20万个街道块上可能出现的亿个轨迹图。这项分析不仅展示了人们是如何在城市中移动的,也通过开始和结束时间连接了每一次旅行的上车和下车的地点情况。研究人员通过这些数据可以计算“拼车”的机会,也可以介绍“共享网络”的概念。最终结果显示:乘客只需要牺牲一点点便利成本,共享拼车模式就可以减少纽约40%的通勤线路,从而减少汽车尾气排放,为数以百万计的城市人口提升经济效益。
MIT:物联网才是智慧城市的未来
在MIT的研究者看来,上面给出的纽约拼车的解决方案,是物联网和数据分析相结合的产物,属于“感知城市”(SenseableCity)的一个典型案例。
什么是“感知城市”呢?这是相对于“智慧城市”(Smartcity)而言的一个概念。MIT认为,最近几年,“智慧城市”这个术语简直要被玩坏了。从市民参与到Zipcar(美国一家以汽车共享为理念的网上租车公司),从开放数据到Airbnb,从共享单车到宽带网络,“智慧城市”这个词无处不在。
这也是MIT为什么用“感知城市”来替代“智慧城市”的原因。因为感知城市的中心更侧重于人,而不是机器。“感知”这个词还有一个双关意,它既代表“可感知”,也代表“可被感知”。所以MIT感知城市实验室