图说三极管
晶体三极管——是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。在电子元件家族中,三极管属于半导体主动元件中的分立元件。广义上,三极管有多种,常见如下图所示。狭义上,三极管指双极型三极管,是最基础最通用的三极管。本文所述的是狭义三极管,它有很多别称:三极管的发明
晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。真空电子管存在笨重、耗能、反应慢等缺点。真空电子三极管
二战时,*事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战结束后获得。早期,由于锗晶体较易获得,主要研制应用的是锗晶体三极管。硅晶体出现后,由于硅管生产工艺很高效,锗管逐渐被淘汰。经半个世纪的发展,三极管种类繁多,形貌各异。小功率三极管一般为塑料包封;大功率三极管一般为金属铁壳包封。
三极管核心结构
三极管的核心是“PN”结,是两个背对背的PN结。可以是NPN组合,也或以是PNP组合。由于硅NPN型是当下三极管的主流,以下内容主要以硅NPN型三极管为例。NPN型三极管结构示意图
三极管的制造流程图
工艺结构特点
管芯结构切面图
发射区高掺杂:为了便于发射结发射电子,发射区半导体掺浓度高于基区的掺杂浓度,且发射结的面积较小。
基区尺度很薄:3~30μm,掺杂浓度低。
集电结面积大:集电区与发射区为同一性质的掺杂半导体,但集电区的掺杂浓度要低,面积要大,便于收集电子。
三极管不是两个PN结的简单拼凑,两个二极管是组成不了一个三极管的。工艺结构在半导体产业相当重要,PN结不同材料成份、尺寸、排布、掺杂浓度和几何结构,能制成各样各样的元件,包括IC。三极管电路符号
三极管电流控制原理示意图
三极管基本电路
外加电压使发射结正向偏置,集电结反向偏置。集/基/射电流关系:IE=IB+IC
IC=β*IB
如果IB=0,那么IE=IC=0
三极管特性曲线
输出特性曲线
集-射极电压UCE为某特定值时,基极电流IB与基-射电压UBE的关系曲线。UBER是三极管启动的临界电压,它会受集射极电压大小的影响,正常工作时,NPN硅管启动电压约为0.6V;UBEuber时,三极管高绝缘,ubeUBER时,三极管才会启动;UCE增大,特性曲线右移,但当UCE1.0V后,特性曲线几乎不再移动。/uber时,三极管高绝缘,ube输出特性曲线
基极电流IB一定时,集极IC与集-射电压UCE之间的关系曲线,是一组曲线。当IB=0时,IC→0,称为三极管处于截止状态,相当于开关断开。
当IB0时,IB轻微的变化,会在IC上以几十甚至百多倍放大表现出来。
当IB很大时,IC变得很大,不能继续随IB的增大而增大,三极管失去放大功能,表现为开关导通。
三极管核心功能
开关功能:以小电流控制大电流的通断。放大功能:小电流微量变化,在大电流上放大表现出来。三极管的放大功能
IC=β*IB(其中β≈10~),例:当基极通电流IB=50μA时,集极电流为IC=βIB=*50μA=μA。微弱变化的电信号通过三极管放大成波幅度很大的电信号,如下图所示:所以,三极管放大的是信号波幅,三极管并不能放大系统的能量。能放大多少?哪要看三极管的放大倍数β值了。首先β由三极管的材料和工艺结构决定,如硅三极管β值常用范围为:30~,锗三极管β值常用范围为:30~,β值越大,漏电流越大,β值过大的三极管性能不稳定。
其次β会受信号频率和电流大小影响:信号频率在某一范围内,β值接近一常数,当频率越过某一数值后,β值会明显减少。
β值随集电极电流IC的变化而变化,IC为mA级别时β值较小。一般地,小功率管的放大倍数比大功率管的大。
三极管主要性能参数
温度对三极管性能的影响
温度几乎影响三极管所有的参数,其中对以下三个参数影响最大。对放大倍数β的影响
在基极输入电流IB不变的情况下,集极电流IC会因温度上升而急剧增大。对反向饱和电流(漏电流)ICEO的影响
ICEO是由少数载流子漂移运动形成的,它与环境温度关系很大,ICEO随温度上升会急剧增加。温度上升10℃,ICEO将增加一倍。虽然常温下硅管的漏电流ICEO很小,但温度升高后,漏电流会高达几百微安以上。对发射结电压UBE的影响
温度上升1℃,UBE将下降约2.2mV。温度上升,β、IC将增大,UCE将下降,在电路设计时应考虑采取相应的措施,如远离热源、散热等,克服温度对三极管性能的影响。三极管的分类
三极管命名标识
不同的国家/地区对三极管型号命名方式不同。还有很多厂家使用自己的命名方式。三极管封装及管脚排列方式
关于封装
三极管设计额定功率越大,其体积就越大,又由于封装技术的不断更新发展,所以三极管有多种多样的封装形式。当前,塑料封装是三极管的主流封装形式,其中“TO”和“SOT”形式封装最为常见。关于管脚排列
不同品牌、不同封装的三极管管脚定义不完全一样的,一般地,有以上规律:规律一:对中大功率三极管,集电极明显较粗大甚至以大面积金属电极相连,多处于基极和发射极之间
规律二:对贴片三极管,面向标识时,左为基极,右为发射极,集电极在另一边
三极管的选用原则
考虑三极管的性能极限,按“2/3”安全原则选择合适的性能参数。集极电流IC:IC2/3*ICM,ICM集极最大允许电流,当ICICM时,三极管β值减小,失去放大功能。
集极功率PW:PW2/3*PCM,PCM集极最大允许功率,当PWPCM三极管将烧坏。
集-射反向电压UCE:UCE2/3*UBVCEO,UBVCEO基极开路时,集-射反向击穿电压,集/射极间电压UCEUBVCEO时,三极管产生很大的集电极电流击穿,造成永久性损坏。
工作频率?:?=15%*?T,?T—特征频率,随着工作频率的升高,三极管的放大能力将会下降,对应于β=1时的频率?T叫作三极管的特征频率。
此外,还应考虑体积成本,优先选用贴片式三极管。
By鱼芯工作室
最后若觉得文章不错,转发分享,也是我们继续更新的动力。
资源大放送!包括但不限于:STM32、51单片机、Arduino、MSP/MSP、PCB设计、C语言、项目分享、等等!在