导语
本文综述了智能网联交通技术发展现状及趋势。智能网联交通系统的技术体系架构是一个集车辆自动化、网络互联化和系统集成化三维于一体的高新技术发展架构。其关键技术模块包括感知模块、融合预测模块、规划模块和控制模块等4个关键部分。智能网联交通系统提出从「普通的车、聪明的路」,或者说是「聪明的系统」起步,逐步发展到「聪明的车、聪明的路」的高级阶段,其对提高道路交通效率、改善交通安全、节约能源等均具有积极意义。
智能交通系统是缓解交通拥堵、提高交通安全、改善交通污染的重要技术手段。随着人工智能、移动互联、大数据等新一代信息技术的迅速发展,以自动驾驶为主要特点的新一代智能交通系统逐渐成为解决交通问题新的突破口。
智能交通系统的发展包含3个阶段:
第1阶段为动态感知,即实现覆盖全网道路的交通信息实时获取,并建立动态感知的大数据平台;
第2阶段为主动管理,即提供主动规划、主动交通管控、主动指挥调度、主动公众服务等动态管理服务;
第3阶段为智能网联,即实现车联网、车路协同、自动驾驶等。
智能网联交通系统作为智能交通系统的终极发展形式,是物联网技术在交通运输领域的重要应用。其通过雷达、视频等先进的车、路感知设备对道路交通环境进行实时高精度感知,按照约定的通信协议和数据交互标准,实现车与车、车与路、车与人以及车与道路交通设施间的通讯、信息交换以及控制指令执行,最终形成智能化交通管理控制、智能化动态信息服务以及网联车辆自动驾驶的一体化智能网络系统。广义上,智能网联交通系统涵盖了智能网联汽车系统与智能网联道路系统,即智能网联车[1]、车联网、主动道路管理系统、自动公路系统等均包含于智能网联交通系统。
本文提出了智能网联交通的技术体系架构,分析了其技术特点及发展优势,对其关键技术的发展现状及趋势进行了梳理,并对中国发展智能网联交通系统提出了思考与建议。
01
智能网联交通技术体系架构
智能网联交通技术体系集中应用了人工智能、传感技术、网络技术、计算技术及自动控制技术等,是一个集车辆自动化、网络互联化和系统集成化三维于一体的高新技术发展架构,其体系发展架构如图1所示。
图1智能网联交通系统三维体系发展架构
1.1三维一体发展架构
1)车辆自动化车辆的自动化发展从低到高可以分为驾驶资源辅助、部分自动化、有条件自动化、高度自动化和完全自动化[2]5个阶段。a)驾驶资源辅助阶段:在适用的设计范围下,自动驾驶系统可持续执行横向或纵向的车辆运动控制某一子任务(不可同时执行),由驾驶员执行其他的动态任务。b)部分自动化阶段:在适用的设计范围下,自动驾驶系统可持续执行横向或纵向的车辆运动控制任务,驾驶员负责执行目标和意外检测与响应(targetandaccidentdetectionandresponse,OEDR)任务并监督自动驾驶系统。c)有条件自动化阶段:在适用的设计范围下,自动驾驶系统可以持续执行完整的动态驾驶任务,用户需要在系统失效时接受系统的干预请求,及时做出响应。d)高度自动化阶段:在适用的设计范围下,自动驾驶系统可以执行完整的动态驾驶任务和动态驾驶任务支援,用户无需对系统请求做出回应。e)完全自动化阶段:自动驾驶系统能在所有道路环境执行完整的动态驾驶任务和动态驾驶任务支援,驾驶员无需介入。2)网络互联化网络互联化发展主要包含信息辅助、有限的互联传感、丰富的信息共享和全网优化性互联4个阶段:a)信息辅助阶段:驾驶员通过路侧设备获取路况信息,从而辅助驾驶和决策。b)有限的互联传感阶段:驾驶员和车辆通过车内设备,以及路侧设备,获取相关信息,从而进一步辅助驾驶及进行决策。c)丰富的信息共享阶段:驾驶员和车辆之间通过车内设备、路侧设备、全网信息中心以及车辆间信息共享设备获得更多层面的信息。不同车辆之间,通过各自认可的驾驶方式进行驾驶和决策,其中驾驶方式包括驾驶员驾驶、车辆自行驾驶、车辆服从全网信息中心指令驾驶。d)全网优化性互联阶段:全交通网络的信息不再过载和重复,驾驶员和车辆获得优化后的信息,迅速地进行安全驾驶和最优的行驶决策。3)系统集成化图2智能网联交通系统集成化发展阶段示意图
系统集成化的发展需要经历交通关键点层系统集成、路段层系统集成、交通走廊层系统集成和全局宏观层系统集成4个阶段,见图2所示
a)交通关键点层系统集成阶段:网联车辆在交通关键点与路侧设备进行信息交互,获得指令和必要信息,在各个交通关键点处解决具体事件,保障各微观节点的交通畅通和安全。该阶段的目标是实现交通关键点以及周边小区域的交通优化控制。b)路段层系统集成阶段:网联车辆与微观交通控制中心联结,获取指令与信息,通过指令在路段层面解决微观问题。这一阶段的目标是以单个路段为单位对交通进行管理和控制。c)交通走廊层系统集成阶段:网联车辆与中观控制中心联结获取出行路径规划。中观控制中心合理控制走廊层面的交通流量,提前预测拥堵事件,合理建议全局系统进行全局规划。本阶段针对路网交通运行具有重要影响的交通走廊,由上一阶段的路段控制整合形成,从而支持更高级的控制算法,实现走廊层面的交通优化管理与控制。d)全局宏观层系统集成阶段:从最高层级优化交通分配,提高出行效率,降低人员出行成本和社会物流成本,实现全路网范围的全局优化管控。图3智能网联交通系统发展路径
1.2系统关键模块
就技术发展路径而言,目前智能网联交通系统分为2个发展方向,即智能网联汽车和智能网联道路,如图3所示。IT企业、车企和运营企业主要开展以车为主的智能网联汽车技术研究;道路交通行业以路为主进行智能网联道路系统研究。智能网联交通系统融合了智能网联汽车与智能网联道路的技术优势,协调发展,最终实现自动驾驶。智能网联交通系统包括感知模块、融合预测模块、规划模块和控制模块等4个关键部分。在系统集成化不同阶段,关键模块参与程度不同,如表1所示:表1智能网联交通系统关键模块参与程度
1)感知模块:实现道路线形估计及环境感知、静态交通状态及动静态障碍物检测与识别、车辆状态估计及运动补偿、高精地图或无地图定位等功能,为路侧单元融合预测模块提供必要的数据支撑,并为路侧单元规划模块提供真实交通模型。
2)融合预测模块:实现路侧感知信息与车辆感知信息融合、多传感器前向信息融合、多传感器多方向信息融合、多车信息融合、车辆轨迹预测、路段交通状态预测、路网交通状态预测等功能。路侧单元与车辆感知设备的信息融合能够提升感知精度,路段多车辆信息融合实现路段状态精准识别。3)规划模块:路网层规划以路网效率、安全和能源消耗为目标,实现最优化;路段层规划根据路网层规划模块结果,对车辆队列、跟车间距等参数进行规划;路侧单元规划以车辆轨迹预测算法为核心,完成车辆行为及运动的规划、推理、决策等。4)控制模块:路网层实现路网交叉口协调控制;路段层实现车队队列控制;路侧单元发送控制指令到车载单元,实现对汽车方向盘、油门、刹车等执行机构的控制。紧急状态下,如通信中断时,控制权移交至车载单元,车载单元以安全为目标控制车辆。1.3?系统关键技术智能网联交通系统融合智能汽车与智能道路的技术优势,涉及汽车、道路交通、计算机、通讯等诸多领域,其包括六大关键技术及两大保障体系。1)六大关键技术a)全时空智慧感知技术:以路侧感知设备为主实现全路网全息信息感知,主要包括道路环境感知、路侧单元°图像采集、车辆状态感知、高精度定位、车路协同感知、动静态交通状态感知等技术。b)大数据技术:智能网联交通系统需完成大批量数据处理,实时挖掘有效交通信息,实现融合预测和路网优化控制等功能,主要包括人工智能、深度学习算法、智能预测、数据融合、图像识别、自适应优化控制等技术。c)云平台技术:系统集成化终极阶段时,需要大量的存储和计算资源,利用云平台技术实现路侧设备、路段和路网信息共享和交互等功能,主要包括智能网联交通可视化技术、智能网联云平台大数据中心、基于智能网联云服务大数据框架等。d)动态交互处理技术:路网层、路段层及路侧设备实时进行数据交互,实现区域路网最优是系统主要特点之一,动态交互处理技术十分关键,主要包括实时数据交互、全方位数据处理、动态数据发布、深度数据挖掘等技术。e)I2X(infrastructuretoeverything)通信技术:智能网联交通系统中不仅需要车车通讯(vehicletovehicle,V2V),路车通讯(infrastructuretovehicle,I2V)和路侧设备通讯(infrastructuretoinfrastructure,I2I)也很重要,通信技术主要包括专用短程通信技术(dedicatedshortrange